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ABSTRUCT

This paper reports our result demonstrating that chaos may emerge as a solution to
a dynamic linear programming (LP) problem. In what follows, we will first discuss the
basic motivation of our research in Section 1 and then set up the specific LP problem
that we deal with in Section 2. We will state our result in the form of a theorem in
Section 3. In Section 4, we will make concluding remarks concerning the direction of

future research.

1. INTRODUCTION problem:

It has been well-known that dynamic (1.5
programming can be treated in the [ o =
standard LP framework by adding a time Ig.gf}xil,m-goe i Z’ PP o .
structure {Dorfman, Samuelson and B 0 0 0 X1 Ax+d
Solow, 1958). In order to demonstrate -A B 0 0 ix d
the existence of chaotic solutions to such subject to ¢c -A B O X5 | S d
a problem, we need to focus on the case in 0 0 -4 B -~ x
which the solutions to an LP problem can L - 5 S P I i
be described by an autonomous system;
chaos is a phenomenon that appears in
autonomous system. In the above problem, the discount factor

For this reason, it is necessary to p is a number between 0 and 1, A and B
work with an infinite-time horizon LP are mx 1 matrices of non-negative
model.  MNow, think of the following LP components, d and p are nx 1 matrices of
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non-negative components, and p’is the
transpose of p. The intended
interpretation of this problem is to
maximize the objective function

> p"'p'x, , which is the discounted sum

faz)

of p'x, over the time periods £1,2,...,
under the recursive constraints

Bx, < Ax, , +d with the initial condition
Xy = X.

By the Bellman principle (see
Bellman, 1957, and Bellman and Xalaba,
1965), the solutions to problem (1.1) can
be described by a binary relation F
That is to say, (x;[, x;, ...) solves (L.1)2f

and only if x, = x and

(1.2)  x e F(x )

for =1,2,..., co. In this sense, we may
call the binary relation Fan optimal
program.’ Because of its linear
structure, the maximization problem,
(1.1}, generally has multiple solutions.
As a result, the binary relation describing
the solutions, F is a set-valued function.

The question that we face is whether
or not such an optimal program can be a
chaotic dynamical system. In order to
deal with this issue, we need to answer
the following two specific questions.

(1) Under what condition, the optimal

UT£ (1.1} is of a finite-time hoﬁzon, the
optimal program depends on time, and
the solutions to that problem can be

writtenas x, € F {x,_).

program, (1.2), is in fact a dynamieal
system of the standard sense, described
by a single-valued function instead of the
set-valued function F'7 (i) Under what
condition the resulting dynamical system
is chaotic? In order to deal with these
guestions, we construct a simple LP
problem with an infinite-time horizon.
We then derive conditions under which
the solutions are deseribed by a chaotic

dyvnamical system.

2. ASIMPLE DYNAMIC LP PROBLEM
Think of the following LP problem
with parameters
a, >0,a,>0,a, >0,a,, >0, k>0
and p,0<p<l.
(2.1

-

$ee]
maximize Z poc
(€, &y Cg0 ky o120 r=I
subject to (i) a,,c, +a,k, <1
(i) a,c, +ank, <k,

(iii) k, = k.

As is noted above, the solutions to
problem (2.1) can be described by a
generalized dynamical system. To this
end, for each (k,_, k), define c(k, , k)
as the maximum value of ¢, 20

satisfying conditions () and (i) of (2.1).

Propositionl: For each k 20, thereis a
non-empty subset of R, , H(k), such that
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if {c,, k¢, ky, ) Is a solution to (2.1),

then it holds that

2.2) keHk_ ) t=12,--, 00,
with k, = x and that

2.3y ¢, =clk, k).

We call system H a generalized
If in
particular, His a function, we call it an

In what

optimal dynamical system.

optimal dynamic svstem.
follows, we will demonstrate that H can
1n fact be a chaotic eptimal dynamical
system. For the characterization of
chaotic motion, we will use the following
result due to Lasota and Yorke (1974) and
{1 and Yorke (1978).

PropositionZ: Let £ be a function on a
closed interval [ into itself satistying that
it is continuously twice differentiable
everywhere except one point be [, and

that there is an « >0 such that

fj’(x)]>i+ efor any x at which |

exists (expanstve and unimodal).  Then,
there Is a unigue Invariant measure on I,
«, that is ergodic with respect to fand

absolutelv continuous with respect to the

Lebesgue measure.

This implies that almost every
trajectory following an expansive and
unimodal dynamica]i system behaveé as if
it were stochastic. The tent map is a
well-known example of an expansive and

umimodal system.
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3. THEOREMS
In order to obtain our result, we set
3.1) a,/a, =1,
and adopt the following notation.
3.2y u=lla,;
3.3y vy=a,la,—1I.

The candidate for cur chaotic optimal

dynamical system is the following

function:
(3.4)
alk,_ )=
.‘ikm if 0k sl/(y+D
~(uIyk ~H i WNy+Dh <k, <L

Under the assumption of U/(1+y)<1,
function /2 maps the unit interval [0, 1]
into itself. For all the practical purposes,
therefore, we may restrict /4 to the closed
interval I =[0, g/(1+7)] and treat it as
a function on fonto itself. Our main
result can be summarized by the

following two theorems.

Theorem 1: Let a, /a, =1, u=1/a,,
and Y=a,/la, —1. Moreover, let h,
be the function (3.4) restricted to interval
I=[0, w /Ay +1} Suppose that
parameters u, o and y satisfy
3.5 O<p<lLpu>landysy-+1i
Then, on interval I, the generalized
optimal dynamical Systém Hik} coincides
with function h, if one of the following
two conditions are satisfied.

Condition A: U=y,



Condition B: the kinked segment OPQ in Figure 1, 2

Y < i < min ?"”m I+ 1+ 4y and 3. Segment OP lies on the ray from

2 ’ 2p the origin with the slope x>0 while

segment PQ lies on the line through point

(M{1+y), x/(1+y)) withslope —p/y <0,
In the case in which Condition A is
In general, the graph of function 7, satisfied, function %, is unimodal but not

1s tent-shaped. It can be illustrated by

0 k* k.,
Figure 1

0 k* k..
Figure 2
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k, 45
45"
P
Q \
L
] k* k
Figure 3

expansive; in this case, given (3.5),

(38) O<p<lLpu>landuc<y.
If—u/y > -1, as is shown in Figure 1,
optimal dynamical system A, is globally
stable; along any solution to (2.1) with
k>0, k, converges to the non-zero fixed
point of system h, k°. If-p/y=-1 as
is shown in Figure 2, along any solution
to (2. 1) with k= 0,k", &, goesintoa
iimit cyele of period 2.

If Condition B is satisfied, as is shown
in Figure 3, function A1is unimodal and
expansive. [n this sense, by
Propositionl, the optimal dynamical
system is chaotic. The existence of

chaotic solutions is guaranteed by the

ne_x_t_re_sult _ﬁogether_w_f;t_h Theorem 1.

Theorem Z: The set of parameters
satisfing (3.58) and Condition B of
Theorem 1 at the same time Is non-

empty.
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An intuitive explanation of our result
is as follows. First, notice that if both
constraints (i) and (i) of (2.1} are
satisfied with equality, ¢, and k, are
uniguely determined for each given k.
In Figure 1, 2 and 3, line L captures the
relationship between k,_, and k£ in this
case, i.e., in the case in which constraints
() and (i1) are both binding.

This leads to the first intuition that
there must exist cases in which along the
optimal solution to (2.1), these
constraints should be both binding. In
those cases, the graph of the optimal
dynamical system lies on line L. Because
each variable must be non-negative
(c, 20,k 20and k,_, 20), it may be
demonstrated that (k,_,, k) cannot lie
above point P if (¢, k, ) satishies
constraints (i) and (i) for a given k,, 20,
In short, only if &, 21/(1+7), the

graph of the optimal dynamical system



can lie on line L.

This leads to the second intuition that
if k_ <1/(1+v), the graph of the
optimal dynamical system must be at the
position closest to line L. This position
is given by segment OP; i.e., for a given
k., <1/(1+7¥), the maximum £, such
that (c,, k, ) satisfies constraints (i) and
(1) together with ¢, 20 and &, 20
appears on segment OF,

1t follows from these intuitions that it
is possible for the tent-shaped graph OPQ
18 the optimal dynamical system, solving
(2.1). AsTheorems 1 and 2 demonstrate,
these intuitions do hold true under
certain conditions but not

unconditionally.

4. EXTENSIONS

Discount factor p governs the speed
of decay in the value of argument ¢, of
the objective funetion, i ,z’}’cr . Itis

r=l

not the case that for any o, 0<p <1, (o,
#, 7 )exists that give rise to a chaotic
optimal dynamical system (i.e., satisfies
(3.5) and Condition B of Theorem 1).
From the viewpoints of various
applications, it is important to see how
slow the speed of decay (i.e., how close to
1 discount factor o) can be for an
optimal dynamical system to be chaotic.

Our result guarantees the existence
of a chaotic optimal dynamical system for
values of discount factor p up to 0.5.

In other words, the least upper bound of

o such that (o,
together with Condition B of Theorem 1

&, v ) satisfies (3.5)
is

4.1y p*=05.

This upper bound poses a serve
limitation on the economic application of
chaotic optimal dynamics. For example,
dynamic LP problem (2.1) may be
interpreted as a model of capital
accumulation, in which ¢, and k! may
be thought of as representing,
respectively, levels of consumption and
capital stock. Under such an
interpretation, o may be thought of as
determining the length of an individual
period of the model. It is generally
considered that p isaround 0.95 in
economic models in which the length of
an individual period is one year. If
p <.5, therefore, the length of a period
becomes about a half decade. In other
words, the economic application of chaotic
optimal dynamics is limited to 2 model in
which the length of a single period is
assumed to be more than a half decade.

It is important to note that p "is not
the least upper bound of discount factors
with which a chaotic optimal dynamical
system can appear. By using essentially
the same model as LP problem (2.1),
Nishimura and Yano (1995) demonstrate
that no matter how close o iste 1, itis
possible to choose (¢, y)in such way

that the optimal dynamical system can be
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chaotic.® That result is based on the
assumption that point Pin Figures 1, 2
and 3 is a cyclical point of dynamical
system A, .

In other words, neither the result of
Nishimura and Yano (1895) nor that
reported in this note provides a complete
characterization for dynamical system
#1, to be the solution to problem (2.1). It
is an important subject left for future
research to derive a necessary and
sufficient condition on parameters {p, o,
¥ ) under which dynamical system 4, is
optimal. Such a characterization would
provide a better understanding on the

possibility of chaotic optimal dynamies.
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